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A Method for the Stress Analysis 
of Lap Joints 

R. D. ADAMS and V. MALLICK* 

Department of Mechanical Engineering, University of Bristol, Bristol BS8 1 TR, UK 

(Received October 16, 1991; in final form March 10. 1992) 

A theory is presented for the adhesive stresses in single and double lap joints under tensile loading, 
while subjected to thermal stress. The formulation includes the effects of bending, shearing, stretching 
and hygrothermal deformation in both the adherend and adhesive. All boundary conditions, including 
shear stress free surfaces, are satisfied. The method is general and therefore applicable to  a range of 
material properties and joint configurations including metal-to-metal, metal-to-CFRP or CFRP-to- 
CFRP.  The solution is numerical and is based on an equilibrium finite element approach. Through the 
use of an iterative procedure, the solution has been extended to cater for non-linear adhesive materials. 

KEY WORDS stress analysis; lap joints; thermal stresses; composite adherends; non-linear adhesives; 
finite element methods. 

1 INTRODUCTION 

There already exist several methods’-’ for the stress analysis of joints. These are 
based either on numerical techniques, such as the finite element method, or on 
closed form solutions. The finite element method is capable of accurate analysis but 
remains expensive and requires specialist knowledge. It is, therefore, not suitable 
for the general adhesive technologist. Conversely, closed form methods may be 
easy-to-use but are less accurate. The main aim of the present analysis is to bridge 
the gap between the two, offering an accessible yet accurate stress analysis. 

The analysis has been developed to cater for the general lap joint configuration. 
That is to say, the adherends may have dissimilar geometric and material properties. 
An attempt has been made to incorporate the influence of adhesive plasticity and 
hygrothermal deformation. Also included is the effect of adherend anisotropy, 
albeit limited to the unidirectional case. 

*Present address: ABB Corporate Research, CH5405 Baden-Daettwil, Switzerland 
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200 R. D. ADAMS AND V. MALLICK 

2 MODEL: BASIC CONSIDERATIONS 

Modern analytical solutions'.'.' for a joint usually cater for the in-plane tensile 
loading case. The adherends are considered as plates in bending and the adhesive 
as a series of tension and shear springs. Shear, in-plane (longitudinal) and out-of- 
plane (peel) stresses are considered in the adherend, and only shear and peel 
stresses are considered in the adhesive. This model for the adhesive layer can be 
restrictive since stresses in the longitudinal direction are ignored and stresses are 
often assumed to be constant across the adhesive thickness. These limitations 
assume particular significance when the hygrothermal response of a joint is consid- 
ered. As the adhesive deforms due to hygrothermal variations, longitudinal stresses 
will be induced and there will be variations of stress across the adhesive, particularly 
at the edges.4 Therefore, the present solution for a joint subjected to hygrothermal 
and tensile loading includes all three stresses, shear, peel and longitudinal, in the 
adhesive and also allows for their variations through the thickness. 

The chosen approach is based on minimising complementary energy while satis- 
fying equilibrium. This approach has already been employed successfully by All- 
man3 and Chen and Cheng' and offers certain advantages over the displacement 
methods such as those proposed by Renton and Vinson' and Delale e ta f .2  Boundary 
conditions, particularly at the joint ends, are easier to satisfy and in higher order 
solutions can be achieved with fewer variables or functions. This reduces the amount 
of computing power required. Another benefit, of major importance here, is that 
thermal stresses are easily included in a complementary energy function. For these 
reasons, it was decided to adopt a similar approach for the present work. 

3 FORMULATION 

The single lap joint (SLJ) is assumed to be in equilibrium with the edge loadings 
shown in Figure 1. Since the joint width is large it is reasonable to assume conditions 
of plane strain. 

2c 

FIGURE 1 Loads at the overlap edges of a lap joint. 
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STRESS ANALYSIS OF LAP JOINTS 20 1 

Therefore, the problem is reduced to one of two-dimensional elasticity where 
the distributions of longitudinal (a,), peel (u,) and shear (T,,) stresses need to be 
determined for each layer. The main simplification to be made is that ux in the 
three layers varies linearly in the transverse coordinate y.  This is consistent with the 
classical beam-plate theory of bending and allows the stress field to be described by 
two independent functions of x.  It will be seen later that this leads to quadratic and 
cubic variations in y for the shear and peel stresses, respectively. 

3.1 The Single Lap Joint 

The joint geometry and boundary conditions are shown in Figure 2. The x origin is 
located at the centre of the joint and is common for all layers. P, Q and M are the 
tensile load, shear load and bending moment per unit applied load, respectively. 
The coordinates yI,  y2, ya and stress components (uxl, uylr T , ~ ~ ) ,  (ux2, uy2, T , ~ ~ ) ,  (uxa, 
uYar T , , ~ )  refer to the upper adherend, lower adherend and adhesive, respectively. 
According to the theory of two-dimensional elasticity the stress distributions must 
satisfy the equations: 

L 3 4 ,  

Sheet 1 

Adhesive 

h2 
Sheet 2 

* 

? ' i t  
J L  

FIGURE 2 Mathematical representation of a single lap joint and its boundary conditions. 
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202 R.  D. ADAMS AND V. MALLICK 

Let us consider the upper adherend first. If the longitudinal stress, uxl, varies 
linearly in the y direction then it can be expressed as 

~xl=$ll(x)+$2l(x) ( 2 )  

By introducing h, into the equations here, large multiples of hl are avoided later, 
thus reducing numerical errors. Since #qI(x) and +21(x) are functions of the x coordi- 
nate only, notation will be made more concise by dropping the (x) and writing $11 

and instead. Substituting the boundary condition that, for all y ,  

U X I  I = o  
x = c  

into eqn. (2) gives the following boundary values for the stress functions 
$2,: 

and 

$11 I = o  

$21 I = o  
x = c  

x = c  

At the opposite end of the joint, the boundary conditions 

when substituted into eqn. (2) gives 

- 12M1 
$21 1 =- 

X = - E  h: ( 3 4  

Differentiating eqn. (2) with respect to x and substituting the result into eqn. ( la )  
we get 

where a prime denotes differentiation with respect to x. Integrating this and using 
t h e  boundary condition, for all x, 

rxyl I = O  
YI = hi  

gives the following expression for the shear stress in the upper adherend: 
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STRESS ANALYSIS OF LAP JOINTS 203 

When the shear stress boundary conditions 

7xyI  I = o  
x = c  

y = 0 

x =  - c  

are substituted into eqn. (4), the boundary values for the first derivatives of the 
stress functions are found to be, for all y: 

By substituting eqn. (4) into the second equilibrium eqn. (Ib), then integrating and 
using the boundary condition, for all x 

the peel stress is obtained as: 

U ~ I = $ " I I  

Similarly, for the lower adherend, the stresses are 

Y2 
u x 2  = ($12 + $22 - 

h2 

2 3  
uy2 = VI2 [; + h2y2 + 

1 2  2 2h2 = +'12 ( -  h2 - y2) + 4'- 

The boundary values of the stress functions and ($22 are 
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204 R.  D.  ADAMS AND V. MALLICK 

$12 I = o  

$22 1 = o  
x =  - c  

x =  - c  

and for the first derivatives 

$)22 1 = o  (1 Id)  
x =  - c  

In the adhesive, the longitudinal stress is also assumed to vary linearly with y giving 

U x a  = $ , a  + $2a + (12) 

Now, for all y, 

uxa 1 = o  
x =  * c  

therefore 

Substituting eqn. (12) into equilibrium eqn. ( la)  and integrating with respect to y 
we get 

where f l  is a function of x arising from the integration. The shear stress in the upper 
adherend and adhesive must be equal at the interface, for all x: 

y a = t  Y1'0 

7 x y a  I = T x y i  1 
Therefore we can set ya = t in eqn. (14) and y, = 0 in eqn. 
expressions to give 

h2 
f i =  -$f12h2+4f22y 

(9) and equate the resulting 

(15) 
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STRESS ANALYSIS OF LAP JOINTS 205 

Alternatively, we could have equated the shear stresses at the other interface: 

T ~ y a  I = 7 ~ ~ 2  I y a = O  y 2 = 0  

This results in the following expression for fl: 

Equating the right hand sides of eqns. (15) and (16) then integrating, we have 

where kl  is a constant of integration. Substituting the boundary values at x = c, (3a 
& b), (10a & b) and (13a & b), into eqn. (17) gives k l = P 1  while substitution of 
conditions at x =  -c,  (3c & d), (10c & d) and (13a & b), gives k l  = P2. Therefore the 
constraint 

k l =  PI = P2 (18) 
is imposed on the system. In other words, the x forces should be in equilibrium. 
Therefore we can write P for both P I  and P2. 

Substituting eqn. (14) into equilibrium eqn. ( lb) and integrating with respect to y, 
we get 

where f2 is a function of x arising from the integration. Analogous to the shear 
stress, the peel stress at the adherend-adhesive interfaces must be equal, therefore, 
for all x,  

y a = t  Yl=o 

(Jya I = u y 1  I 
(Jya 1 = m y 2  1 y a = O  y2 = 0 

From these conditions the following two expressions for f2 may be derived: 

Substituting eqn. (20) into eqn. (21) and then integrating gives 

where k2 is a constant of integration. Using the boundary conditions at x =  k c ,  (5) 
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206 R.  D. ADAMS AND V. MALLICK 

and ( l l ) ,  and the fact that T~~~ in eqn. (14) is equal to zero at these points we find 
that 

k2= - Q I =  -Q2 (23) 

QI=Q=Qz (24) 

This constraint imposes equilibrium in the y direction, so 

Integrating eqn. (22) gives 

The constant of integration, k3, is determined by considering the boundary values 
of the stress functions at x = 2 c in a manner similar to that employed in finding k ,  
and k2. The value k3 is then found to be: 

- 
k3=- Ph2+ M2 - Pt + Qc 

2 
or 

Equating these expressions for k3 we have the following condition which ensures 
moment equilibrium: 

This, 
static 

together with constraints (18) and (23), ensures that the joint is in a state of 
equilibrium. 

Eqns. (17) and (25) can be viewed as two simultaneous equations of $ l a  and 
terms of the other stress functions. Solving for $ la  and 

in 
we get 

$la  = [AllT{@) (27a) 

and $2a = [A2lTW (27b) 
where { @ } = { $ I l ,  $21. $12, $22, x ,  

2h,t + 3h: 
[A, ]=$  [ -‘..j h,t + 2hf 

2h2t + 2h,Z 

- 2Pt - 6k3 

- 6hlt - 6hf 
-3hlt -4hf 

[A2]=$ [ - 6h:rt’ 3hzt -4% ] 
6Pt + 12k3 

The formulation is now complete. The joint stresses have been defined in terms of 
four independent functions $21, $12 and $22) as opposed to the two functions 
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STRESS ANALYSIS OF LAP JOINTS 207 

used by Allmad and Chen and Cheng.5 The next, and final stage, of the solution 
procedure is to determine these functions. This can be achieved by defining the 
complementary energy in terms of the stress functions. Then minimisation of the 
energy function will yield the stress functions. Unfortunately, a closed form solution 
is very difficult, if not impossible, since four, coupled fourth-order differential 
equations need to be solved. Therefore, a numerical solution has been sought. 

3.2 Numerical Solution 

As advocated by Allman,3 the present formulation is well suited to a finite element 
solution. Allman has suggested a solution procedure based on an equilibrium finite 
element method. A similar approach has been adopted here. 

For a body in plane strain, 

{a} = [Dl {E - 4 
where 

and {E~} is the thermal strain array: 

(4 = :: ] 
Y X Y  

If the material is [inearly elastic then [D] is the plane strain modulus array. 

The complementary energy, U*, may be written as 

U* =- {a}' [D]-' {a} dv + { u } ~  {E~} dv 
2 'I I 

V V 

Remembering that for the joint {a} = {axl, uyl,  T , ~ ] ,  uxa, uya, u x 2 ,  uy2, ~ ~ ~ 2 } ~ ,  we 
can use eqns. (2), (4) and (6)-(9), (12), (14) and (19) to find arrays IN], {C(x)} and 
{k} such that 

I d  = "I{@.) + {C(X>> + {k} (30) 

where 

{ @ } = { ~ I I ,  $ ' I , ,  Viir 421, $'2 ir  +''21, $123 4 ' 1 2 ,  $"121 $22, $'nr 4"dT, 
{C(x)} is a [ 9 x  11 array of functions of x which are known, 
{k} is a [9 x 11 array of constants derived from the joint geometry and 
loading. 

Now consider the joint divided into a number of finite elements of the type shown in 
Figure 3. The element has a finite width, 21, and is an adherend-adhesive-adherend 
"sandwich." 
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Edge i 

FIGURE 3 A finite element. 

Edge i+l 

In this element, if edges can be viewed as "nodes" then the degrees of freedom are 
the stress functions and their first derivatives. Thus, each element consists of two 
nodes and sixteen degrees of freedom. If {+} is the array of the stress functions and 
their first derivatives for an element with end nodes (i) and ( i+ 1) then: 

{+} = {#i/ +'?I +;; +'$). . . . .+;; 1)  4';; I )} lhX 1 

We can then define an appropriate shape function array [B] such that 

Substitution of eqns. (30) and (31) into eqn. (29) results in the following expression 
for the complementary energy for an element: 

{+IT[FII4d - {+lTIH1 +constant 
1 U*(C) = - 
2 

If the joint is assumed to have unit width then, for each element, 

[ F I = I j - ( [  BI T N T D  [ 1 [ l-l"IIBl)dxdY 

[HI = I - "BIT"lTIDl - "{C(X)l + MI + [BlT"lT{4) dxdy 

Here [D] is a [9 x 91 matrix and is the elastic modulus array for the whole joint. The 
integration is taken over the whole area of the element. Explicit listings of the 
matrices [B], [D], [F] and [HI for the general case of a single lap joint with trans- 
versely isotropic adherends are given elsewhere.8 
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STRESS ANALYSIS OF LAP JOINTS 209 

The total joint complementary energy is obtained by summing elemental contribu- 
tions according to well-known structural analysis matrix methods. Thus, the joint 
complementary energy is 

1 
U* = 5 {+}'[F]&} - {+}'[€I] + constant 

where {a, [El, and [HI are global matrices. The complementary energy, U*, is 
minimised when 

LFlkb} = [HI (33) 

This is a set of linear equations which can be solved, using standard matrix methods, 
to give the &} vector. For a solution to exist, [El must be a positive definite matrix. 
This is achieved by applying the boundary conditions ( 3 ) ,  ( 5 ) ,  (10) and (11) to eqn. 
(33). Once {+} has been obtained, the stress function at any point in the joint is 
determined from eqn. (31) and the stresses are calculated from eqn. (30). 

3.3 The Double Lap Joint 

A double lap joint (DLJ) is illustrated in Figure 4. In the present work, mid-plane 
symmetry will be assumed, so we need only consider one half of the joint. The DLJ 
differs from the SLJ in two fundamental ways. First of all, there is no externaf 
bending moment in the DLJ since it does not rotate like the SLJ. Secondly, due to 
symmetry, there is no net shear or peel force in the mid-adherend. 

The formulation is similar to the SLJ case. Once again we place the x origin at the 
centre of the joint (Fig. 4). The coordinates y l ,  y2, ya and stress components (uxl, 
uYl, T,~I), ( u x 2 ,  uy2, ~ ~ ~ 2 ) ~  (uxa, uya, T , ~ ~ )  refer to the upper adherend, lower adherend 
and adhesive respectively. 

a 

Yl 

h,  Sheet 1 

Ax I 1  

Adhesive t 
l i  

Sheet 2 

, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
G, 

FIGURE 4 Mathematical representation of a double lap joint and its boundary conditions. 
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210 R .  D.  ADAMS AND V. MALLICK 

Employing the same arguments as we did for the SLJ, we find that the stress distribu- 
tions in the upper adherend in the DLJ are given by 

and the edge boundary conditions are 

Turning our attention to the lower adherend, let us begin with the usual assumption 
that the longitudinal stress is 

(38)  Y2 
u x 2  = $12 + $22 - h2 

In this sheet there is no net applied bending moment, thus 
h2/2 

ux2y2dy2=0 
- h2l2 

Substituting eqn. (38) into this condition we find that 

$22 = 0 

u x 2  = $12 (39) 

Therefore 

Substituting eqn. (39) into the first equilibrium eqn. ( l a )  and then integrating we 
have 

7 x y 2  = - h 2 f Y z  + g, 
where gl is a function of x. However, g, = O  if there is no net shear force in the y 
direction. So, we have 

7 x y 2 =  -$'12Y2 (40) 
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STRESS ANALYSIS OF LAP JOINTS 21 1 

Substituting eqn. (40) into the second equilibrium eqn. ( lb )  gives 

Y: 
u y 2  = v12 7 + g2 

where g, is a function of x. In the adhesive, 

Substituting eqn. (42) into equilibrium eqn. ( l a )  we get: 

Y; 
Txya = - + f  laYa - +'2a 5 + g, 

Substitution of eqn. (43) into equilibrium eqn. ( lb )  gives 

(43) 

(44) 

where g3 and g4 are functions of x. In order to satisfy the edge conditions, the values 
of the stress functions at  these points must be: [;:I 4' la 

+ f 2 a  x = c  

[ i ]  0 

From the two shear stress interface conditions, for all x, 

we have the following expressions for g3: 

+'12h2 g,= -2 

0 2 a f  g, = vI1 hl + + + - 2 
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212 R.  D .  ADAMS AND V. MALLICK 

Equating the right hand sides of these expressions and then integrating we get 

Using the stress function boundary values (37)  we get k = PI  while (45) gives k = P2. 
Therefore PI = P2, and static equilibrium is satisfied. Applying a similar procedure 
as above, but using the two peel stress interface conditions, for all x, 

Ya't Y I ' O  

uya I =my1 I 
ya=O y2 = h ~ / 2  

u y a  1 = m y 2  1 
we find that 

We can re-arrange eqn. (46) to express in terms of the other functions. This 
means that the entire stress condition can now be described in terms of four indepen- 
dent stress functions: $1 j, ~ $ 2 ~ ~  +la ,  C$2a. These can be solved numerically employing 
an identical procedure to that outlined in the previous section (3.2). The [F] and 
(HI matrices for the double lap joint are given elsewhere.* 

4 SOLUTION FOR AN ELASTO-PLASTIC ADHESIVE 

By including initial stresses in the present formulation, an iterative scheme' can be 
used to model elasto-plasticity in the adhesive. Rewriting the stress-strain relation- 
ship (28), for the adhesive, to include initial stress {ui}, we have 

{a} = [DIk - 4 +bJ (47) 
This leads to the following definitions for the [F] and [HI matrices: 

[H]=J J -([ B] T N T D  [ ] [ ] [{ C (x)> +&I] + [BITINIT{~J + [DI -'{uJ) dxdy 

where [F] remains unaffected but there is an extra term for initial stress in [HI. This 
extra term is easily calculated if Gaussian integration points are introduced and the 
initial stresses are determined at these points. 

The complete process is as follows (the numbers inside the brackets refer to the 
load increment, outside the brackets they refer to the iteration): 

(1) [I&] is assembled for the full required load level. The system (4") = P]-'/H,,J 
is solved and the b,,}, k0} arrays are obtained. Each Gauss point is then tested 
for yield and the load is scaled down to a level which causes first yield. 
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STRESS ANALYSIS OF LAP JOINTS 213 

(2) An increment of the remaining load is applied, m] = m,],, is assembled and 
the system 

& I } '  = PI - ' L H l I O  

is solved. 
( 3 )  The resulting elastic changes in stress (60'~)~ and strain &I}I are determined. 
(4) At each Gauss point, the actual stress increment, { 6 ~ ~ } ~ ,  due to the strain 

 BE^}^ is computed in accordance with the plasticity rule 

dial  = [Depld{~} 

where [Dep] is the well known elasto-plastic modulus matrix.'" The current stress 
strain state is determined (and stored): 

{a} = {a,,} + {6u111 

(€1 = (4 + { 8 4 l  

( 5 )  The difference in stress ( 6 ~ ' ~ ) ~  - { 6 ~ ~ } ~  is treated as an initial stress { u ~ ' ) } ~  and 
used to determine a new [HI. {a:')} can be viewed as the stresses required to 
restore the stress to the correct plastic value (see Fig. 5 ) .  

(6) The system 

& I}, = [El - [ _ H I  I, - 1 

is solved and steps 3-5 repeated until the difference 
b!')}, is less than a specified value. 

repeated until the full load has been applied. 

I - &}, or the vector 

(7)  The next load increment is applied and the iterative process of steps 2-6 

Strain 
FIGURE 5 Initial stress solution procedure 
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214 R.  D.  ADAMS AND V. MALLICK 

5 VALIDATION 

An interactive computer program for a desktop Personal Computer, JOINT, has 
been developed to implement the numerical solution described above. The adhesive 
elastic stresses obtained for a typical Aluminium-Aluminium single lap joint are 
compared in Figure 6 with a Finite Element (FE) analysis, using the program 
FELDEP." The modelled joint consisted of 1.62 mm thick and 25 mm wide adher- 
ends with an overlap of 13 mm and a glue line thickness of 0.125 mm. In the FE 
model, three 8-noded isoparametric elements were employed across the adhesive 
thickness. A load of 8.5 kN was applied to the joint. To allow comparisons between 
the present theory, FE and the theory by Allman,' the distributions have been 
averaged across the adhesive thickness. This has been achieved by summing all the 
Gauss point values across the thickness and then dividing the total by the number 
of Gauss points. 

The present theory seems to agree well with FE except at the very ends where 
the FE peaks are higher and closer to the edges. Contrary to the FE predictions, 
the theoretical peel stresses seem to fall at the ends. However, if the peel stress at 
the lower adherend/adhesive interface is plotted (Fig. 7), then the theory predicts 
a similar trend to the FE in that the stresses fall at the unloaded end only. This 
example illustrates one of the dangers in plotting averaged adhesive stresses. 

A Gr greater consequence of averaging is the loss of accuracy in joint strength 
prediction. This is simply because the maximum stress occurs near the adhesive/ 
adherend corner and this value will always be higher than any average. In fact, there 
exists a mathematical singularity in this regionI2 and even with a FE solution an 
accurate value of stress is difficult to obtain. 

To assess the accuracy of the present theory in this critical region, principal stress 
vectors in the adhesive layer are compared with FE predictions in Figure 8. In this 
plot, vectors with bars at each end signify a compressive principal stress. 

The theoretical vectors suggest a through thickness variation of stress similar to 
that predicted by FE. The main difference is in the magnitude and position of the 
peak stresses. Whereas the FE vectors peak towards the edge, the theoretical ones 
peak further into the overlap region, an effect which was observed earlier in Figure 
6. Furthermore, the largest FE vector occurs at the adhesive/adherend corner. 
However, as mentioned above, there is a singularity at this point and this FE vector 
is far too sensitive to mesh refinement to be meaningful. Usual practise, to avoid 
this problem, is to allow the FE model to be plastic in this region or to introduce 
a spew fillet or both. Since no such singularities arise in the present solution, it is 
difficult to determine its accuracy from this direct comparison with FE. 

It may be that, in its initial formulation, the present solution was overconstrained 
thus preventing a singularity and leading to lower peak stresses. Whatever the case, 
an alternative method of establishing the present theory's accuracy would be to 
compare predicted values for strength with experimental measurements. 

6 CONCLUSIONS 

In an attempt to provide a lap joint analysis which was as easy to use as the closed 
form solutions but which approached the accuracy of the finite element method 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
2
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



STRESS ANALYSIS OF LAP JOINTS 2 1s 

70 

60 

10 

0 

-10 

I: 
$ 0  
I *  I ,  

Theory 
FEM - . . - . - 

\ 

------Gerlap ed- 

0 2 4 6 
Distance from overlap centre 

mm 

80 

20 

0 

-20 

Theory 
FEM 

0 Allrnan 
.__.___.._ 

Distance from overlap centre 
mm 

90 

80 

I .  

2 4 6 
Distance from overlap centre 

mm 

FIGURE 6 The (a)  longitudinal. (b)  peel and (c) shear stress distributions in an AI-AI balanced joint 
subjected to a load of 8.5 kN. 
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FIGURE 7 Peel stress at the adherend/adhesive interface. 
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(FEM), a new solution procedure has been developed. It is, in essence, an equilib- 
rium finite element method. The finite element is an adherend-adhesive-adherend 
sandwich with stress as the basic variable. With the numerical nature of the method, 
a computer implementation of the solution is necessary. There is no disadvantage 
in this respect by comparison with some of the more useful closed form solutions 
which also require some form of computing power. The analysis improves on closed 
form methods by considering adhesive plasticity, in-plane (or longitudinal) stress 
and variation of stress through the adhesive thickness. The present method is 
capable of analysing a general joint consisting of dissimilar adherends of unequal 
thickness. In addition, thermal deformation of both adherend and adhesive is incor- 
porated. 

Comparison with FEM results showed that the present theory was in close agree- 
ment except at points close to the overlap edges. At these points, the FEM stresses 
are always high due to the presence of a mathematical singularity. Nevertheless, 
the theory agreed with the FEM regarding the nature of the stresses, if not the 
magnitudes, in this region. 
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